9,10-phenanthrenequinone induces monocytic differentiation of U937 cells through regulating expression of aldo-keto reductase 1C3.
نویسندگان
چکیده
Persistent inhalation of diesel exhaust particles results in damaged lung cells through formation of reactive oxygen species (ROS), but the details of the toxicity mechanism against monocytes are poorly understood. In this study, we used human promyelomonocytic U937 cells as surrogates of monocytes and investigated the toxicity mechanism initiated by exposure to 9,10-phenanthrenequinone (9,10-PQ), a major quinone component in diesel exhaust particles. A 24-h incubation with 9,10-PQ provoked apoptotic cell death, which was due to signaling through the enhanced ROS generation and concomitant caspase activation. Flow cytometric analyses of U937 cells after long-term exposure to 9,10-PQ revealed induction of differentiation that was evidenced by increasing expression of CD11b/CD18, a cell-surface marker for monocytic differentiation into macrophages. The 9,10-PQ-induced differentiation was significantly abolished by ROS inhibitors, suggesting that ROS generation contributes to cell differentiation. The 9,10-PQ treatment increased the expression of aldo-keto reductase (AKR) 1C3, which reached a peak at 1 to 2 d post-treatment and then declined. The bell-shaped curve of the AKR1C3 expression by 9,10-PQ resembled that caused by phorbol 12-myristate 13-acetate, a differentiation inducer. Additionally, the concomitant treatment with tolfenamic acid, a selective AKR1C3 inhibitor, sensitized the differentiation induced by 9,10-PQ. These results suggest that ROS formation during 9,10-PQ treatment acutely leads to apoptosis of U937 cells and the initiation of monocytic differentiation, which proceeds after the provisional overexpression of AKR1C3.
منابع مشابه
Characterization of htAKR, a novel gene product in the aldo-keto reductase family specifically expressed in human testis.
In human testis, expression of a novel member of the aldo-keto reductase family was identified. Based on its testis-specific expression, we termed this protein human testis aldo-keto reductase (htAKR). In addition to four major isoforms, the existence of multiple alternatively spliced products of htAKR was detected using RT-PCR followed by nested PCR. htAKR was a homologue of mouse liver keto-r...
متن کاملAldo-keto Reductase 1C3 (AKR1C3) is Expressed in Differentiated Human Epidermis, Affects Keratinocyte Differentiation and is Upregulated in Atopic Dermatitis
Aldo-keto reductase 1C3 (AKR1C3) has been shown to mediate the metabolism of sex hormones and prostaglandin D(2) (PGD(2)), a lipid mediator that promotes skin inflammation in atopic dermatitis (AD). As both have a role in skin function and pathology, we first sought to investigate the expression pattern of AKR1C3 in normal human epidermis. Immunofluorescence revealed a strong expression of AKR1...
متن کاملBerberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells
Aldo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were mea...
متن کاملThe catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.
Despite their widely varying physiological functions in carbonyl metabolism, AKR2B5 (Candida tenuis xylose reductase) and many related enzymes of the aldo-keto reductase protein superfamily utilise PQ (9,10-phenanthrenequinone) as a common in vitro substrate for NAD(P)H-dependent reduction. The catalytic roles of the conserved active-site residues (Tyr51, Lys80 and His113) of AKR2B5 in the conv...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 35 9 شماره
صفحات -
تاریخ انتشار 2012